在△ABC中,∠B=2∠C,AD⊥BC,交BC于点D,M为BC的中点,AB=10,求DM的长
A=180°-(B+C)=180°-3C,设BC=a,则由正弦定理得:
a=(10/sinC)sinA=(10/sinC)sin(180°-3C)=(10/sinC) sin3C
=(10/sinC)(3sinC-4sin³C)=10(3-4sin²C)
故︱DM︱=(a/2)-10cos2C=5(3-4sin²C)-10cos2C=15-20sin²C-10(cos²C-sin²C)
=15-10sin²C-10cos²C= 15-10(sin²C+cos²C)=15-10=5.