(1)用数学归纳法.
A(n+1)=An^2-nAn+1=An(An-n)+1>=An*2+1>=(n+2)*2+1=2n+5>n+1+2
(2)因为an>=n+2,所以an-n>=2
A(n+1)=An(An-n)+1>=2An+1
A(n+1)+1>=2(An+1)
1/(A(n+1)+1)
(1)用数学归纳法.
A(n+1)=An^2-nAn+1=An(An-n)+1>=An*2+1>=(n+2)*2+1=2n+5>n+1+2
(2)因为an>=n+2,所以an-n>=2
A(n+1)=An(An-n)+1>=2An+1
A(n+1)+1>=2(An+1)
1/(A(n+1)+1)