由结论sin(α+β)·sin(α-β)=sin^2α-sin^2β可得.
∵ sin(α+β)·sin(β-α)=sin^2β-sin^2α
而 sin^2β-sin^2α=1-cos^2β-1+cos^2α=cos^2α-cos^2β.
∴ cos^2α-cos^2β=sin(α+β)·sin(β-α)=m.
由结论sin(α+β)·sin(α-β)=sin^2α-sin^2β可得.
∵ sin(α+β)·sin(β-α)=sin^2β-sin^2α
而 sin^2β-sin^2α=1-cos^2β-1+cos^2α=cos^2α-cos^2β.
∴ cos^2α-cos^2β=sin(α+β)·sin(β-α)=m.