对f(x)求导f '(x)=1+1/x^2-a/x,求f '(x)=0时,x 的值(注意x的取值范围:x>0)
由f '(x)=0 得 x^2-ax+1=0 解得 x1=[a+sqrt(a^2-4)]/2 x2=[a-sqrt(a^2-4)]/2
a>=2时:
f '(x)>=0,即 0
对f(x)求导f '(x)=1+1/x^2-a/x,求f '(x)=0时,x 的值(注意x的取值范围:x>0)
由f '(x)=0 得 x^2-ax+1=0 解得 x1=[a+sqrt(a^2-4)]/2 x2=[a-sqrt(a^2-4)]/2
a>=2时:
f '(x)>=0,即 0