f(x)=㏒a(x+1)/(x-1) =㏒a((x-1+2)/(x-1))=㏒a(1+ 2/(x-1)) x∈﹙-1,1﹚
∵1+ 2/(x-1))单调递减
∴x∈(n,a-2) 可知-1<n<a-2<1 ∴1<a<3
f(x)单调递减 (注意复合函数.同增异减)
f(x)min=f(a-2)=㏒a(1+ 2/(a-2-1))=1
∴ 1+ 2/(a-3)=a
解得a1=2-√3 (舍)
a2=2+√3
又f(x)的值域为(1,+∞)
∴n=-1
综上a=2+√3
n=1
f(x)=㏒a(x+1)/(x-1) =㏒a((x-1+2)/(x-1))=㏒a(1+ 2/(x-1)) x∈﹙-1,1﹚
∵1+ 2/(x-1))单调递减
∴x∈(n,a-2) 可知-1<n<a-2<1 ∴1<a<3
f(x)单调递减 (注意复合函数.同增异减)
f(x)min=f(a-2)=㏒a(1+ 2/(a-2-1))=1
∴ 1+ 2/(a-3)=a
解得a1=2-√3 (舍)
a2=2+√3
又f(x)的值域为(1,+∞)
∴n=-1
综上a=2+√3
n=1