[cos(π/8)]^4[sin(π/8)]^4=[cos(π/8)sin(π/8)]^4=[(1/2)sin(π/4)]^4=[√2/4]^4=1/64
cos^4π/8sin^4π/8等于
1个回答
相关问题
-
sin^4π/8-cos^4π/8=?
-
(cosπ/8+sinπ/8)(cos^3π/8-sin^3π/8).
-
f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)*cos(x+π/8)=cos(2x+π/4)+sin(
-
sinαcosα=1/8且π/4〈α〈π/2,则cos^4α-sin^4α的值等于?
-
不用计算器,求(cos(π/8))^4+(cos(3π/8))^4+(cos(5π/8))^4+(cos(7π/8))^
-
已知sin(π8+α2)cos(π8+α2)=14,α∈(π4,3π4),cos(β−π4)=35,β∈(π2,π)
-
fx=1-2sin^2(x+π/4)+2sin(x+π/8)cos(x+π/8)
-
化简:sin(a+5π)cos(-π/2-a)·cos(8π-a)/sin(a-3π)·sin(-a-4π)
-
sin²π/8 -cos²π/8
-
y=4sin(πx/8+π/4-π)怎样变成y=-4sin(πx/8+π/4)过程~