因为AB=AC,BD=DC,所以AD垂直平分BC.
连CP,则BP=CP,∠CBP=∠BCP.
又由∠ABC=∠ACB,
∠ABC-∠CBP=∠ACB-∠BCP,即∠ABP=∠ACP.
因为CF‖AB,所以∠F=∠ABP=∠ACP,
又因为公共角∠CPF,ΔCPE∽ΔFPC,
PF/PC=PC/PE,从而PF·PE=PC²=PB²
因为AB=AC,BD=DC,所以AD垂直平分BC.
连CP,则BP=CP,∠CBP=∠BCP.
又由∠ABC=∠ACB,
∠ABC-∠CBP=∠ACB-∠BCP,即∠ABP=∠ACP.
因为CF‖AB,所以∠F=∠ABP=∠ACP,
又因为公共角∠CPF,ΔCPE∽ΔFPC,
PF/PC=PC/PE,从而PF·PE=PC²=PB²