解题思路:(1)由A1D1分别是△ABD的中位线,B1C1是△CBD的中位线知,A1D1∥B1C1,A1D1=B1C1=[1/2]BD,故四边形A1B1C1D1是平行四边形,由AC⊥BD,AC∥A1B1,BD∥A1D1知,四边形A1B1C1D1是矩形;
(2)由三角形的中位线的性质知,B1C1=[1/2]BD=4,B1A1=[1/2]AC=3,故矩形A1B1C1D1的面积为12,可以得到故四边形A2B2C2D2的面积是A1B1C1D1的面积的一半,为6;
(3)由三角形的中位线的性质可以推得,每得到一次四边形,它的面积变为原来的一半,故四边形AnBnCnDn的面积为
24×
1
2
n
;
(4)由相似图形的面积比等于相似比的平方可得到矩形A5B5C5D5的边长,再求得它的周长.
(1)证明:∵点A1,D1分别是AB、AD的中点,
∴A1D1是△ABD的中位线
∴A1D1∥BD,A1D1=[1/2]BD,
同理:B1C1∥BD,B1C1=[1/2]BD
∴A1D1∥B1C1,A1D1=B1C1=[1/2]BD
∴四边形A1B1C1D1是平行四边形.
∵AC⊥BD,AC∥A1B1,BD∥A1D1,
∴A1B1⊥A1D1即∠B1A1D1=90°
∴四边形A1B1C1D1是矩形;
(2)由三角形的中位线的性质知,B1C1=[1/2]BD=4,B1A1=[1/2]AC=3,
得:四边形A1B1C1D1的面积为12;四边形A2B2C2D2的面积为6;
(3)由三角形的中位线的性质可以推得,每得到一次四边形,它的面积变为原来的一半,
故四边形AnBnCnDn的面积为24×
1
2n;
(4)方法一:由(1)得矩形A1B1C1D1的长为4,宽为3.
∵矩形A5B5C5D5∽矩形A1B1C1D1
∴可设矩形A5B5C5D5的长为4x,宽为3x,则4x•3x=
1
25×24,
解得x=
1
4
∴4x=1,3x=
3
4
∴矩形A5B5C5D5的周长=2•(1+
3
4)=
7
2
方法二:矩形A5B5C5D5的面积/矩形A1B1C1D1的面积
=(矩形A5B5C5D5的周长)2/(矩形A1B1C1D1的周长)2
即[3/4]:12=(矩形A5B5C5D5的周长)2:142
∴矩形A5B5C5D5的周长=
3
4×
1
12×142=
7
2.
点评:
本题考点: 矩形的判定;三角形中位线定理.
考点点评: 本题利用了三角形的中位线的性质,相似图形的面积比等于相似比的平方求解.