1.
f'(x) = ax^2+bx+c
a = 6,
4b + 6c = -18
2/3b + c = -3
f'(2/3) = 6*(2/3)^2 + (-3) = -1/3
2.
f''(x) = 2ax +b
若要f(x0) 为 f(x) 的一个极值,则须
f''(x0) = 0
所以 2ax0 + b = 0
x0 (2a + b/x) = 0
a>0, 所以 x0 = 0
1.
f'(x) = ax^2+bx+c
a = 6,
4b + 6c = -18
2/3b + c = -3
f'(2/3) = 6*(2/3)^2 + (-3) = -1/3
2.
f''(x) = 2ax +b
若要f(x0) 为 f(x) 的一个极值,则须
f''(x0) = 0
所以 2ax0 + b = 0
x0 (2a + b/x) = 0
a>0, 所以 x0 = 0