f(0)=-1 c=-1
f(x)≥x-1 即ax^2+(b-1)x≥0 a≠0时,a0,开口向上,△=(b-1)^2≤0 b=1
f(-1/2+x)=f(-1/2-x),对称轴是x=-1/2 -b/2a=-1/2 a=b=1
所以f(x)=x^2+x-1
f(0)=-1 c=-1
f(x)≥x-1 即ax^2+(b-1)x≥0 a≠0时,a0,开口向上,△=(b-1)^2≤0 b=1
f(-1/2+x)=f(-1/2-x),对称轴是x=-1/2 -b/2a=-1/2 a=b=1
所以f(x)=x^2+x-1