求(1+1/2^2)(1+1/2^4 )(1+2/2^8)(1+2/2^16)(1+2/2^32)+1的个位数字
2个回答
(2+1)(2^2+1)(2^4+1)..(2^32+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)..(2^32+1)+1
=2^64-1+1
=2^64
所以找规律可得个位数6
相关问题
(2+1)(2^2+1)(2^4+1)(2^8+1)……(2^32+1)的个位数字
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1的末位数字.
求(2-1)(2+1)(2^2+1)(2^4+1)…(2^32+1)+1的个位数字
提问:试确定(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1的末位数字
试确定(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)的末位数字.
试确定(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1的末位数字
(2-1)(2+1)(2^2+1)(2^4+1)…(2^32+1)+1的个位数字
S=(2+1)(2^2+1)(2^4+1).(2^32+1)+2,求S的个位数字
求(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1的个位数是几?
求值:(2+1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)-2^32