若tan(3x+y)=2,tan(x+y)=-4 求tan2x
1个回答
解
tan2x
=tan[(3x+y)-(x+y)]
=[tan(3x+y)-tan(x+y)]/[1+tan(3x+y)tan(x+y)]
=6/(1-8)
=-6/7
相关问题
求证tan(x+y)*tan(x-y)=(tan2x-tan2y)/(1-tan2xtan2y)
证明:tan(x+y)tan(x-y)=tan②x-tan②y/1-tan②xtan②y
求证tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)
1 求证:tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)
如何证明 tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)
已知tan(x-y)=2,tan(y+π5)=3,则tan(x+π5)=( )
若tan(π+x+y)=3/5,tan(y-π/3)=1/3则tan(x+π/3)=
求证:tan(x+y)+tan(x-y)=sin2xcos2x−sin2y.
tan(x+y)tan(x-y)=sin^2x-sin^2y/cos^2x-sin^2y 顺便问一下. tan,sin,
已知tan(x+y)=3,tan(x-y)=1/2,则sin2x/sin2y=