解题思路:(1)设“甲射击5次,恰有3次击中目标”为事件A,分析可得射击5次,恰有3次击中目标即5次独立重复实验中恰有3次发生,由n次独立重复实验中恰有k次发生的概率公式,计算可得答案;
(2)设“甲恰好射击5次后,被中止射击”为事件C,甲恰好射击5次后被中止射击,必是第4、5次未击中目标,第3次击中目标,第1次与第2次至少有一次击中目标,由相互独立事件概率的乘法公式,计算可得答案.
(1)设“甲射击5次,恰有3次击中目标”为事件A,
射击5次,恰有3次击中目标即5次独立重复实验中恰有3次发生,
则P(A)=
C35(
2
3)3•(
1
3)2=
80
243.
(2)设“甲恰好射击5次后,被中止射击”为事件C,
甲恰好射击5次后被中止射击,必是第4、5次未击中目标,第3次击中目标,第1次与第2次至少有一次击中目标,
则P(C)=[
C22(
2
3)2+
C12
2
3•
1
3]•
2
3•(
1
3)2=
16
243.
则甲恰好射击5次后,被中止射击的概率为[16/243].
点评:
本题考点: n次独立重复试验中恰好发生k次的概率;互斥事件与对立事件.
考点点评: 本题考查相互独立事件的概率和n次独立重复实验中恰有k次发生的概率计算,解(2)的关键在于依据题意,分析出5次射击的结果.