已知,正方形ABCD中,点E为AD边上一点,CE交对角线BD于点P,PE=AE

1个回答

  • 证明:(1)连AC,AP,AD=CD ∠ADP=∠CDP=45° DP=DP

    ⇒△ADP≅△CDP⇒PA=PC

    ⇒∠PAC=∠PCA

    EA=PE⇒∠EAP=∠EPA=∠PAC+∠PCA

    ⇒∠EAP=2∠PAC

    ∠EAP+∠PAC=45°

    ⇒3∠PAC=45°⇒∠PAC=15°

    ⇒∠DAP=30°

    △ADP≅△CDP⇒∠DCE=∠DAP=30°

    ⇒CE=2ED

    (2)AD∥BC⇒ED/BC=PD/BD

    tan∠DCE=ED/DC=1/√(3)

    BC=DC=√(3 )ED

    ED/√(3)ED=PD/6

    ∴PD=2√(3)cm