解题思路:通过举反例可知“数列{an}为等方差数列”⇒“数列{an}是等方差数列”不能成立,反之不成立.从而得出答案.
若数列{an}为等方差数列,比如1,
3,
5,…
但其本身不是等差数列.故“数列{an}为等方差数列”⇒“数列{an}是等方差数列”不能成立,
反之,若数列{an}为等差数列,比如1,3,5,…,
但其本身不是等方差数列.
所以则甲是乙的既不充分也不必要条件.
故选D.
点评:
本题考点: 必要条件、充分条件与充要条件的判断.
考点点评: 本题考查必要条件、充分条件与充要条件的判断,数列的性质和应用,解题时要认真审题,仔细解答,适当运用反例说明命题不正确.