∵f(x)=-(1/2)(x+2)^2+bln(x+1),
∴f′(x)=-(x+2)+b/(x+1).
∵f(x)在(0,+∞)上是减函数,∴当x>0时,有:f′(x)<0,
∴-(x+2)+b/(x+1)<0,∴-(x+1)(x+2)+b<0,∴b<(x+1)(x+2).
令y=(x+1)(x+2)=x^2+3x+2,∴y′=2x+3,∴当x>0时,y′>0,
∴y=(x+1)(x+2)在区间(0,+∞)上是增函数,而当x=0时,y=2.
∴在区间(0,+∞)上,y=(x+1)(x+2)>2,
∴只要满足b≦2,就能确保b<(x+1)(x+2)在区间(0,+∞)上恒成立.
∴b的取值范围是:(-∞,2].