A\P\B是双曲线上三点,x2/a2-y2/b2=1(a>0,b>0),且A\B连线过原点,PA与PB斜率的乘积=5/3

1个回答

  • 设:A(m,n)、B(-m,-n)、P(p,q)

    PA斜率是:[q-n]/[p-m];PB斜率是:[q+n]/[p+n],则:

    [(q-n)/(p-m)]×[(q+n)/(p+m)]=5/3

    [q²-n²]/[p²-m²]=5/3 ---------------------(1)

    因:

    m²/a²-n²/b²=1、p²/a²-q²/b²=1

    两式相减,得:

    (m²-p²)/a²-(n²-q²)/b²=0

    则:

    (q²-n²)/(p²-m²)=b²/a²=5/3

    5a²=3b²=3(c²-a²)

    3c²=8a²

    e=c/a=√(8/3)=(2√6)/3