解题思路:(1)四边形ABCE是菱形.由平移得到四边形ABCE是平行四边形,又AB=BC,可以推出四边形ABCE是菱形;
(2)①四边形PQED的面积不发生变化.根据菱形的性质和已知条件可以求出菱形的面积,过A作AH⊥BD于H,再根据三角形的面积公式可以求出AH,由菱形的对称性知△PBO≌△QEO,所以BP=QE,现在可以得到S四边形PQED=S△BED,而S△BED的面积可以求出,所以四边形PQED的面积不发生变化.
②如图2,当点P在BC上运动,使△PQR与△COB相似时,∵∠2是△OBP的外角,∴∠2>∠3,∴∠2不与∠3对应,∴∠2与∠1对应,即∠2=∠1,∴OP=OC=3,过O作OG⊥BC于G,则G为PC的中点,△OGC∽△BOC,根据相似三角形的对应线段成比例可以求出CG,而PB=BC-PC=BC-2CG,根据这个等式就可以求出BP的长.
(1)四边形ABCE是菱形.
∵△ECD是由△ABC沿BC平移得到的,
∴EC∥AB,且EC=AB,
∴四边形ABCE是平行四边形,
又∵AB=BC,
∴四边形ABCE是菱形;
(2)①四边形PQED的面积不发生变化.
方法一:∵ABCE是菱形,
∴AC⊥BE,OC=[1/2]AC=3,
∵BC=5,
∴BO=4,
过A作AH⊥BD于H,(如图1).
∵S△ABC=[1/2]BC×AH=[1/2]AC×BO,
即:[1/2]×5×AH=[1/2]×6×4,
∴AH=[24/5].
或∵∠AHC=∠BOC=90°,∠BCA公用,
∴△AHC∽△BOC,
∴AH:BO=AC:BC,
即:AH:4=6:5,
∴AH=[24/5].
由菱形的对称性知,△PBO≌△QEO,
∴BP=QE,
∴S四边形PQED=[1/2](QE+PD)×QR=[1/2](BP+PD)×AH=[1/2]BD×AH
=[1/2]×10×[24/5]=24.
方法二:由菱形的对称性知,△PBO≌△QEO,
∴S△PBO=S△QEO,
∵△ECD是由△ABC平移得到的,
∴ED∥AC,ED=AC=6,
又∵BE⊥AC,
∴BE⊥ED,
∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED=S△BED
=[1/2]×BE×ED=[1/2]×8×6=24.
②方法一:如图2,当点P在BC上运动,使△PQR与△COB相似时,
∵∠2是△OBP的外角,
∴∠2>∠3,
∴∠2不与∠3对应,
∴∠2与∠1对应,
即∠2=∠1,
∴OP=OC=3
过O作OG⊥BC于G,则G为PC的中点,
∴△OGC∽△BOC,
∴CG:CO=CO:BC,
即:CG:3=3:5,
∴CG=[9/5],
∴PB=BC-PC=BC-2CG=5-2×[9/5]=[7/5].
方法二:如图3,当点P在BC上运动,使△PQR与△COB相似时,
∵∠2是△OBP的外角,
∴∠2>∠3,
∴∠2不与∠3对应,
∴∠2与∠1对应,
∴QR:BO=PR:OC,即:[24/5]:4=PR:3,
∴PR=[18/5]
,
过E作EF⊥BD于F,设PB=x,则RF=QE=PB=x,
DF=
ED
点评:
本题考点: 菱形的判定;全等三角形的判定与性质;相似三角形的判定与性质.
考点点评: 此题主要考查了图形变换,把图形的变换放在平行四边形,菱形的背景之中,利用特殊四边形的性质探究图形变换的规律.