问根号1,根号2,根号3……根号2010中是有理数的个数
2个回答
44²=1936,45²=2025
所以44
相关问题
根号1,根号2,根号3一直到根号2010中有几个是有理数,
在根号1到根号2012中,有理数的个数——
计算:/1-根号2/+/根号3-根号2/+/根号3-根号4/./根号2009-根号2010/
(1/根号2+1)+(1/根号3+根号2)+(1/2+根号3)+(1/根号5+2)+……+(1/根号2010+根号201
计算:(根号2-根号3)^2010乘(根号2+根号3)^2011=
求1+根号2012(根号2011-根号2010)/根号2012+根号2011+根号2012+根号2010 的值
为什么根号2减根号3是有理数?
下列各数中的根号三的积为有理数的是 A根号2 B3根号2 C2根号3 D2-根号3
x,y为有理数,设9-(根号2)x-根号2=x+3y-(根号2)y-根号8,求(x-y)^2010的值
根号2-根号3是有理数还是无理数