设数列{an}前n项和为Sn,且Sn=2an-2,令bn=log2an(解释一下,可能看不清楚:底数是2,真数是an)第

1个回答

  • (1)当n=1时,a1=S1=2a1 - 2,得a1=2

    当n2时,Sn=2an-2,有Sn-1 = 2an-1 - 2 注:这里的n-1是下标

    两式相减得an = 2an - 2an-1,化简得an = 2an-1 ,即an / an-1 =2(常数)

    所以{an}是以2为首项,2为公比的等比数列

    所以an=2* 2^(n-1)=2^n

    (2)证明:由(1)得bn=log2an=n,则

    cn=bn/an=n/2^n(求它的前n项和Tn的话用错位相减法即可)

    Tn= 1/2 + 2/4 + 3/8 + 4/16 + ...+n/2^n

    (1/2)Tn =1/4 + 2/8 + 3/16 + 4/32 + ...+(n-1)/2^n+ n/2^(n+1)

    相减得(1/2)Tn=1/2 + 1/4 + 1/8 + 1/16 + ...+ 1/2^n - n/2^(n+1)(除最后项外刚好是个等比数列的和)

    即(1/2)Tn=(1/2)[1 - (1/2)^n]/(1 - 1/2) - n/2^(n+1)= 1 - 1/2^n- n/2^(n+1)

    两边同乘2得Tn= 2 - 2/2^n - n/2^n=2 - (n+2)/2^n 2,即证