cos(π/2-α)=根号2cos(3/2π+β)-->sin(α)=根号2*cos(3/2π+β) =根号2*cos(1/2π-β)=根号2*sin(β)
3sin(3π/2-α)=-根号2sin(π/2+β)-->根号3*sin(3π/2-α)= -根号3*sin(π/2+α)=-根号2*sin(π/2+β)-->根号3*sin(π/2+α)=根号2*sin(π/2+β)-->根号3*sin(π/2+α)=根号3*cos(-α)= 根号2*sin(π/2+β)= 根号2*cos(-β)--〉根号3*cos(α)=根号2*cos(β)
由此知:sin(α)=根号2*sin(β),根号3*cos(α)=根号2*cos(β),联立方程式,消去α
[sin(β)]^2=1/4,sin(β)=1/2( 0<β<π,sin(β)>0)
β=π/6,或5π/6
当β=π/6时,α=π/4
当β=5π/6时,α=3π/4