用柯西不等式,
(a1+a2+a3 + .. +an)^2
≤ ([a1]^2+[a2]^2+[a3]^2 + .. +[an]^2)(1^2+1^2+ .. +1^2)
= n([a1]^2+[a2]^2+[a3]^2 + .. +[an]^2)=n
所以 a1+a2+a3 + .. +an≤√n , 等号当且仅当 a1=a2=a3= .. =an.
用柯西不等式,
(a1+a2+a3 + .. +an)^2
≤ ([a1]^2+[a2]^2+[a3]^2 + .. +[an]^2)(1^2+1^2+ .. +1^2)
= n([a1]^2+[a2]^2+[a3]^2 + .. +[an]^2)=n
所以 a1+a2+a3 + .. +an≤√n , 等号当且仅当 a1=a2=a3= .. =an.