(1)、证明:连接CO,则:CO⊥AB ∠BCO=∠A=45° CO=AO=1/2AB
在△AOP和△COQ中
AP=CQ
∠A=∠BCO
AO=CO
∴△AOP≌△COQ (SAS)
∴OP=OQ
∠AOP=∠COQ
∴∠POQ=∠COQ+∠COP
=∠AOP+∠COP
=∠AOC
=90°
∴△ POQ是等腰直角三角形
(2)、S=1/2CQ×CP
=1/2×t(4-t)
=1/2t²+2t
=-1/2(t-2)²+2
当t=2时,S取得最大值,最大值S=2
(3)、四边形PEQC是矩形
证明:连接OD
∵点D是PQ中点
∴CD=PD=DQ=1/2PQ
OD=PD=DQ=1/2PQ
∴CD=OD
∠DCO=∠DOC
∠CEO+∠DCO=90°
∠DOE+∠DOC=90°
∴∠CEO=∠DOE
∴DE=DO
∴DE=CD
∵PD=DQ
∴四边形PEQC是平行四边形
又∠ACB=90°
∴四边形PEQC是矩形
(4)、由DO=DC可知:点D在线段OC的垂直平分线上,其运动路径为CO垂直平分线与AC、BC交点间线段
点D运动的路径长=1/2AB=2√2