函数f(x)满足f(0)=0,其导函数f'(x)的图象如图,则f(x)在[-2,1]上的最小值为(  )

2个回答

  • 解题思路:根据导数的符号可得函数f(x)在(-∞,-1)上是减函数,在(-1,+∞)上是增函数,故函数f(x)在[-2,1]上的最小值为f(-1).导函数f'(x)是一条直线,求出它的方程,可得函数f(x)的解析式,从而求出f(-1)的值.

    由导数的图象可得,当x<-1时,导函数f'(x)<0,当x>-1时,导函数f'(x)>0,

    故函数f(x)在(-∞,-1)上是减函数,在(-1,+∞)上是增函数.

    故函数f(x)在[-2,1]上的最小值为f(-1).

    由于导函数f'(x)是一条直线,其方程为 y=f'(x)=2x+2,

    故f(x)=x2+2x+c,再由f(0)=0可得c=0,

    ∴f(x)=x2+2x,f(-1)=-1,

    即函数f(x)在[-2,1]上的最小值为f(-1)=-1,

    故选A.

    点评:

    本题考点: 利用导数研究函数的单调性.

    考点点评: 本题主要考查利用导数研究函数的单调性,求直线方程,求出f(x)=x2+2x,是解题的关键,属于中档题.