关于等差数列的一道高一数学题12.设无穷等差数列﹛an﹜的前n项和为Sn.(1)若首项a1=3/2,公差d=1,求满足S

1个回答

  • (Ⅰ)an=a1+(n-1)d=n+1/2

    Sn=(a1+an)n/2=(n+2)n/2

    S(k^2)=(Sk)^2,即

    (k^2+2)k^2/2=(k+2)^2k^2/4

    k=4或k=0 (Ⅱ)由S(k^2)=(Sk)^2可知

    a1=S1=(S1)^2,a1=S1=0或a1=S1=1

    1)当a1=0时,设公差为d,则an=(n-1)d

    Sn=n(n-1)d/2,所以

    k^2(k^2-1)d/2=k^2(k-1)^2d^2/4,即

    2(k+1)d=(k-1)d^2对任何k都成,则

    d=0

    即无穷等差数列an=0

    2)a1=1时,设公差为d,则an=(n-1)d+1

    Sn=n[(n-1)d+2]/2,所以

    k^2[(k^2-1)d+2]/2=k^2[(k-1)d+2]^2/4,即

    2d(k-1)(k+1)=d(k-1)[(k-1)d-4)]对所有k都成,则

    d=0

    即无穷等差数列an=1

    所以an=1或an=0