(1)a.b=cos(x/2)sin(3x/2)+cos(3x/2)*sin(x/2)=sin(3x/2+x/2)=sin2x
|a+b|=根号(a^2+b^2+2ab)=根号(2+2sin2x)=根号(2+2sin2x)
(2)f(x)=sin2x+2根号(1+sin2x)
根号(1+sin2x)=t t属于[1,根号2]
f(x)=2t+t^2-1=t^2+2t-1
对称轴为-1 所以[1,根号2]单调递增
f(x)最大值为 f(根号2)=1+2根号2
f(x)最小值为 f(1)=1+2-1=2
望采纳