求定积分【3,-3】∫1/(1+1/x²)d(1/x)
原式=【3,0】∫1/(1+1/x²)d(1/x)+【0,-3】∫1/(1+1/x²)d(1/x)
令u=1/x,x=3时u=1/3;x=-3时u=-1/3;x→0⁻时u→-∞;x→0⁺时u→+∞.
故原式=【1/3,+∞】∫1/(1+u²)du+【-∞,-1/3】∫1/(1+u²)du
=arctanu∣【1/3,+∞】+arctanu∣【-∞,-1/3】arctanu
=π/2-arctan(1/3)+arctan(-1/3)-(-π/2)=π-2arctan(1/3).