解题思路:(1)根据在Rt△ABC中利用勾股定理求得AC,根据BC=CD,AE=AD求得AE=AC-AD即可.
(2)根据FA=FE=AB=1,求得AE可得△FAE是黄金三角形可得∠EAG=∠F=36°.
(1)在Rt△ABC中,由AB=1,BC=[1/2],
得AC=
12+(
1
2)2=
5
2,
∵以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E
∴BC=CD,AE=AD,
∴AE=AC-CD=
5−1
2;
(2)∠EAG=36°,理由如下:
∵FA=FE=AB=1,AE=
5−1
2,
∴[AE/FA]=
5−1
2,
∴△FAE是黄金三角形,
∴∠F=36°,∠AEF=72°,
∵AE=AG,
∴∠EAG=∠F=36°.
点评:
本题考点: 相似三角形的判定与性质;勾股定理.
考点点评: 本题考查了勾股定理在直角三角形中的应用,考查了相似三角形的证明和性质,本题中求证三角形相似是解题的关键.