a,b,a+b成等差数列,2b=a+a+b b=2a
a,b,ab成等比数列 b^2=a*ab b=a^2
解得a=2 b=4
所以an=4/(2*2n^2+4n)=1/n(n+1)=1/n-1/(n+1)
{an}的前n项和=(1-1/2)+(1/2-1/3)+...+[1/n-1/(n+1)]
=1-1/(n+1)
=n/(n+1)
a,b,a+b成等差数列,2b=a+a+b b=2a
a,b,ab成等比数列 b^2=a*ab b=a^2
解得a=2 b=4
所以an=4/(2*2n^2+4n)=1/n(n+1)=1/n-1/(n+1)
{an}的前n项和=(1-1/2)+(1/2-1/3)+...+[1/n-1/(n+1)]
=1-1/(n+1)
=n/(n+1)