tanα+tanβ=-4
tanαtanβ=-3
tan(α+β)=-4/(1+3)=-1
sin^2(α+β)+sin(α+β)cos(α+β)
=[sin^2(α+β)+sin(α+β)cos(α+β)]/1
=[sin^2(α+β)+sin(α+β)cos(α+β)]/[sin^2(α+β)+cos^2(α+β)]
=[tan^2(α+β)+tan(α+β)]/(1+tan^2(α+β))
=(1-1)/(1+1)
=0
tanα+tanβ=-4
tanαtanβ=-3
tan(α+β)=-4/(1+3)=-1
sin^2(α+β)+sin(α+β)cos(α+β)
=[sin^2(α+β)+sin(α+β)cos(α+β)]/1
=[sin^2(α+β)+sin(α+β)cos(α+β)]/[sin^2(α+β)+cos^2(α+β)]
=[tan^2(α+β)+tan(α+β)]/(1+tan^2(α+β))
=(1-1)/(1+1)
=0