2*2*2+4*4*4+6*6*6+···+98*98*98+100*100*100
=8*(1^3+2^3+3^3+...+50^3)
=8*(1+8+27+...+50^3)
=8*[(50+1)*50/2]^2
=8*1/4*2601^2
=2*6765201
=13530402
注:1^3+2^3+3^3+.+n^3=[(n+1)n/2]^2
2*2*2+4*4*4+6*6*6+···+98*98*98+100*100*100
=8*(1^3+2^3+3^3+...+50^3)
=8*(1+8+27+...+50^3)
=8*[(50+1)*50/2]^2
=8*1/4*2601^2
=2*6765201
=13530402
注:1^3+2^3+3^3+.+n^3=[(n+1)n/2]^2