1、∵BC=AF,且BC∥AF
∴ABAF是平行四边形,
∴S△AFB=S△ABC=3
∵△ABC≌△AEF
∴S△AEF=S△ABC=3
∴S四边形BCEF=S△AFB+S△AEF+S△ABC=3+3+3=12
2、原式
=x²-2x+1+x²-9+x²-4x+3
=3x²-6x-5
=3(x²-2x)-5
=3×2-5
=1
1、∵BC=AF,且BC∥AF
∴ABAF是平行四边形,
∴S△AFB=S△ABC=3
∵△ABC≌△AEF
∴S△AEF=S△ABC=3
∴S四边形BCEF=S△AFB+S△AEF+S△ABC=3+3+3=12
2、原式
=x²-2x+1+x²-9+x²-4x+3
=3x²-6x-5
=3(x²-2x)-5
=3×2-5
=1