解题思路:首先观察给出的三个图形的规律,然后再来判断第n个图案需要的花盆数.
第一个图形,需要的花盆数:1+2=3=
2×(1+2)
2,
第二个图形,需要的花盆数:1+2+3=6=
3×(1+3)
2,
第三个图形,需要的花盆数:1+2+3+4=10=
4×(1+4)
2,
…
依此类推,第n个图形,需要的花盆数:1+2+3+…+(n+1)=
(n+1)(1+n+1)
2=
(n+1)(n+2)
2.
故答案为
(n+1)(n+2)
2.
点评:
本题考点: 规律型:图形的变化类.
考点点评: 主要考查学生对图形的分析及运用所学知识转化的问题,学生应善于思考敢于联系所学知识解决问题.