tan[a+b]=
(tan[a]+tan[b])/(1-tan[a]tan[b])
=tan[45]=1
即1-tan[a]tan[b]
=tan[a]+tan[b];
所以原式等于1+(tan[a]+tan[b])+tan[a]tan[b]=
1+(1-tan[a]tan[b])+tan[a]tan[b]
=2
tan[a+b]=
(tan[a]+tan[b])/(1-tan[a]tan[b])
=tan[45]=1
即1-tan[a]tan[b]
=tan[a]+tan[b];
所以原式等于1+(tan[a]+tan[b])+tan[a]tan[b]=
1+(1-tan[a]tan[b])+tan[a]tan[b]
=2