1.(3-2x)/(x-3) + (2+mx)/(3-x) =1
(3-2x)/(x-3) - (2+mx)/(x-3) =1 改变符号,使(3-x)变成(x-3)
3-2x-(2+mx)=x-3 等号两边同乘以(x-3)
3-2x-2-mx=x-3 去括号
mx=4-3x 移项
m=(4-3x)/x
因为3-2X/X-3 +2+MX/3-X =1 无解,所以x=3 (分母为0分式没有意义)
把x=3代入 m=(4-3x)/x 得 M= - 5/3
2.x/(x-3)-2=m/(3-x)
x/(x-3)-m/(3-x)=2 移项
x/(x-3)+m/(x-3)=2 改变符号,使(3-x)变成(x-3)
x+m=2(x-3) 等号两边同乘以(x-3)
x+m=2x-6 去括号
-x=-6-m 移项
x=6+m
因为原分式方程解为正根,即 x>0 ,即 6+m>0 ,所以 m>-6