求证:如果两个三角形三条内角分线分别对应相等,证明这两个三角形全等.

1个回答

  • 证明:

    过C作CP//AB交AD延长线于P,过C'作C'P'//A'B'交A'D'延长线于P'

    ∴∠APC=∠BAP=∠CAP

    ∴AC=PC

    同理,A'C'=P'C'

    又∵AC=A'C'

    ∴PC=AC=A'C'=P'C'

    ∵CP//AB

    ∴△ABD∽△PCD

    ∴AD/PD=AB/PC

    ∴AD/PD=AB/AC

    同理,A'D'/P'D'=A'B'/A'C'

    ∴AD/PD=A'B'/A'C'=AB/AC=A'D'/P'D'

    又∵AD=A'D'

    ∴PD=P'D'

    ∴AP=A'P'

    又∵AC=A'C',PC=P'C'

    ∴△ACP≌△A'C'P'

    ∴∠PAC=∠P'A'C'

    又∵∠PAC=∠BAD,∠P'A'C'=∠B'A'D'

    ∴∠PAC=∠BAD=∠P'A'C'=∠B'A'D'

    ∴∠BAC=∠B'A'C'

    又∵AB=A'B',AC=A'C'

    ∴△ABC≌△A'B'C'