解题思路:把已知条件两边加上b2,再分解因式得到(a+b)2=(c+b)2,则a=c,然后根据等腰三角形的判定方法求解.
∵a2+2ab=c2+2bc,
∴a2+2ab+b2=c2+2bc+b2,
∴(a+b)2=(c+b)2,
∵a、b、c为△ABC的三边长,
∴a+b=c+b,
∴a=c,
∴△ABC为等腰三角形.
故选B.
点评:
本题考点: 因式分解的应用.
考点点评: 本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.
解题思路:把已知条件两边加上b2,再分解因式得到(a+b)2=(c+b)2,则a=c,然后根据等腰三角形的判定方法求解.
∵a2+2ab=c2+2bc,
∴a2+2ab+b2=c2+2bc+b2,
∴(a+b)2=(c+b)2,
∵a、b、c为△ABC的三边长,
∴a+b=c+b,
∴a=c,
∴△ABC为等腰三角形.
故选B.
点评:
本题考点: 因式分解的应用.
考点点评: 本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.