已知圆C:x2+y2-2x+4y=0,则过原点O且与圆C相切的直线方程为______.

4个回答

  • 解题思路:设出切线方程,利用圆心到直线的距离等于半径,求出切线方程即可.

    圆C:x2+y2-2x+4y=0化为(x-1)2+(y+2)2=5,

    所以圆的圆心坐标为(1,-2),半径为

    5,原点在圆上,与圆心连线不平行坐标轴,

    设切线方程为y=kx,所以

    |k+2|

    1+k2=

    5,

    解得k=[1/2],所以切线方程为:y=[1/2]x.

    故答案为:y=[1/2]x.

    点评:

    本题考点: 圆的切线方程.

    考点点评: 本题考查点到直线的距离公式的应用,考查圆的切线方程的求法,考查计算能力.