f(x)=√3sinωx*cosωx + (sinωx)^2 + (cosωx)^2 + (cosωx)^2
=(√3/2)*sin2ωx + (1+cos2ωx)/2 + 1
=(√3/2)*sin2ωx + (1/2)*cos2ωx + 3/2
=sin(2ωx + π/6) + 3/2
∵函数f(x)在y轴右侧的第一个最高点的横坐标为π/6
∴sin(2ωx + π/6)取最大值
即:2ω*(π/6) + π/6 =π/2
ω*(π/3) =π/3
∴ω=1
f(x)=√3sinωx*cosωx + (sinωx)^2 + (cosωx)^2 + (cosωx)^2
=(√3/2)*sin2ωx + (1+cos2ωx)/2 + 1
=(√3/2)*sin2ωx + (1/2)*cos2ωx + 3/2
=sin(2ωx + π/6) + 3/2
∵函数f(x)在y轴右侧的第一个最高点的横坐标为π/6
∴sin(2ωx + π/6)取最大值
即:2ω*(π/6) + π/6 =π/2
ω*(π/3) =π/3
∴ω=1