由已知得3a1+4b1=c1,3a2+4b2=c2,两式相减得(3a1-3a2)+(4b1-4b2)=c1-c2,两边同乘以5得
5(3a1-3a2)+10(2b1-2b2)=5(c1-c2).
因此对于二元一次方程组{3A1X+2B1Y=5C1,3A2X+2B2Y=5C2,也是两式相减得
(3a1-3a2)x+(2b1-2b2)y=5c1-5c2,所以
x=5,y=10
由已知得3a1+4b1=c1,3a2+4b2=c2,两式相减得(3a1-3a2)+(4b1-4b2)=c1-c2,两边同乘以5得
5(3a1-3a2)+10(2b1-2b2)=5(c1-c2).
因此对于二元一次方程组{3A1X+2B1Y=5C1,3A2X+2B2Y=5C2,也是两式相减得
(3a1-3a2)x+(2b1-2b2)y=5c1-5c2,所以
x=5,y=10