A+C=45°,设a=b/q.c=bq,sinA/(b/q)=(1/√2)/b=sinC/(bq)
消去q ,得到sinA·sinC=1/2.cos(A+C)=1/√2=cosA·cosC-1/2.
cosA·cosC=1/√2+1/2=(2+√2)/2√2.
tanA·tanC=√2/(2+√2).
A+C=45°,设a=b/q.c=bq,sinA/(b/q)=(1/√2)/b=sinC/(bq)
消去q ,得到sinA·sinC=1/2.cos(A+C)=1/√2=cosA·cosC-1/2.
cosA·cosC=1/√2+1/2=(2+√2)/2√2.
tanA·tanC=√2/(2+√2).