由(1+x)14=a0+a1x+a2x2……+a14x14,可知,
a0=C140 a1=C141 a2=C142 …… a7=C147
故(a1+2a2+3a3+…7a7)= C141+ 2C142+3 C143 +……+ 7C147
因为,Cmn =m/n*Cm-1n-1 (m≥n,且同是自然数.)
故C141+ 2C141+3 C142 +……+ 7C147
= C141+2*(14 /2)C130+3*(14/3) C131 +……+ 7*(14/7)C137
=14+14 C130+14 C131 +……+ 14C137
=14(C130+ C131 +……+ C137)
因为,Cmn= Cmm-n
故C141+ 2C141+3 C142 +……+ 7C147
=14(C130+ C131 +……+ C137)
=14/2(C130+ C131 +……+ C148 +…… C1313)
=14/2*2^13
=7*2^13
故a1+2a2+3a3+…7a7)*2(-13)次
=7*2^13 *2^(-13)
=7
答案为7