数列{a n }中,a 1 =a,a n+1 =ca n +1-c(n∈N * )a、c∈R,c≠0

1个回答

  • (1)证明:∵a n+1=ca n+1-c,∴a n+1-1=c(a n-1)

    ∴a≠1时,{a n-1}等比数列.

    ∵a 1-1=a-1,∴ a n-1 =(a-1) c n-1 ,∴ a n =(a-1) c n-1 +1

    (2)由(1)可得 a n =-

    1

    2 (

    1

    2 ) n-1 +1=-(

    1

    2 ) n +1

    ∴ b n =n• (

    1

    2 ) n

    ∴S n= 1•

    1

    2 +2•(

    1

    2 ) 2 +…+n•(

    1

    2 ) n

    1

    2 S n= 1•(

    1

    2 ) 2 +2• (

    1

    2 ) 3 +…+(n-1)•(

    1

    2 ) n +n• (

    1

    2 ) n+1

    两式相减可得

    1

    2 S n=

    1

    2 + (

    1

    2 ) 2 + (

    1

    2 ) 3 +…+ (

    1

    2 ) n -n• (

    1

    2 ) n+1 =1-

    n+2

    2 n+1

    ∴ S n =2-

    n+2

    2 n

    (3)证明: C n =4+

    5

    (-4) n -1 ,

    d n =

    25× 16 n

    ( 16 n -1)( 16 n +4) =

    25× 16 n

    ( 16 n ) 2 +3× 16 n -4 <

    25× 16 n

    ( 16 n ) 2 <

    25

    16 n

    ∴ T n = d 1 + d 2 +…+ d n <25(

    1

    16 +

    1

    16 2 +

    1

    16 3 +…+

    1

    16 n )=

    25×

    1

    16 (1- (

    1

    16 ) n )

    1-

    1

    16 =

    5

    3 (1-

    1

    16 n )<

    5

    3