(1)证明:∵a n+1=ca n+1-c,∴a n+1-1=c(a n-1)
∴a≠1时,{a n-1}等比数列.
∵a 1-1=a-1,∴ a n-1 =(a-1) c n-1 ,∴ a n =(a-1) c n-1 +1
(2)由(1)可得 a n =-
1
2 (
1
2 ) n-1 +1=-(
1
2 ) n +1
∴ b n =n• (
1
2 ) n
∴S n= 1•
1
2 +2•(
1
2 ) 2 +…+n•(
1
2 ) n
∴
1
2 S n= 1•(
1
2 ) 2 +2• (
1
2 ) 3 +…+(n-1)•(
1
2 ) n +n• (
1
2 ) n+1
两式相减可得
1
2 S n=
1
2 + (
1
2 ) 2 + (
1
2 ) 3 +…+ (
1
2 ) n -n• (
1
2 ) n+1 =1-
n+2
2 n+1
∴ S n =2-
n+2
2 n
(3)证明: C n =4+
5
(-4) n -1 ,
d n =
25× 16 n
( 16 n -1)( 16 n +4) =
25× 16 n
( 16 n ) 2 +3× 16 n -4 <
25× 16 n
( 16 n ) 2 <
25
16 n
∴ T n = d 1 + d 2 +…+ d n <25(
1
16 +
1
16 2 +
1
16 3 +…+
1
16 n )=
25×
1
16 (1- (
1
16 ) n )
1-
1
16 =
5
3 (1-
1
16 n )<
5
3