1.(a^2/2a^2+bc)+(b^2/2b^2+ac)+(c^2/2c^2+ab)=3/2+ac+bc+ab
因为a+b+c=0,所以(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac)=0,所以ab+bc+ac=0
所以有(a^2/2a^2+bc)+(b^2/2b^2+ac)+(c^2/2c^2+ab)=3/2+0=3/2
2.令A=a^2n-1,B=b^2n-1,C=c^2n-1
根据题意有
1/A+1/B+1/C=1/(A+B+C)=1/[(a^2n-1)+(b^2n-1)+(c^2n-1)]