令x=y=0 得f(0)=0
令y=1得 f(x)=f(1)x+f(x) 从而f(1)=0
令x=y=-1 即f(1)=-2f(-1) 所以f(-1)=0
令y=-1 f(-x)=f(-1)x-f(x) 所以f(x)是奇函数
是不是还有什么条件?
不然好像只能假设存在X>0使得f(X)>0才能往下做了.
令x=y=0 得f(0)=0
令y=1得 f(x)=f(1)x+f(x) 从而f(1)=0
令x=y=-1 即f(1)=-2f(-1) 所以f(-1)=0
令y=-1 f(-x)=f(-1)x-f(x) 所以f(x)是奇函数
是不是还有什么条件?
不然好像只能假设存在X>0使得f(X)>0才能往下做了.