证明:(Ⅰ)连接OC,如下图所示:因为OA=OC,所以∠OCA=∠OAC
又因为AD⊥CE,所以∠ACD+∠CAD=90°,
又因为AC平分∠BAD,所以∠OCA=∠CAD,
所以∠OCA+∠CAD=90°,即OC⊥CE,
所以CE是⊙O的切线
(Ⅱ)连接BC,因为AB是⊙O的直径,
所以∠BCA=∠ADC=90°,
因为CE是⊙O的切线,所以∠B=∠ACD,
所以△ABC∽△ACD,
所以
,
即AC 2=AB·AD.
证明:(Ⅰ)连接OC,如下图所示:因为OA=OC,所以∠OCA=∠OAC
又因为AD⊥CE,所以∠ACD+∠CAD=90°,
又因为AC平分∠BAD,所以∠OCA=∠CAD,
所以∠OCA+∠CAD=90°,即OC⊥CE,
所以CE是⊙O的切线
(Ⅱ)连接BC,因为AB是⊙O的直径,
所以∠BCA=∠ADC=90°,
因为CE是⊙O的切线,所以∠B=∠ACD,
所以△ABC∽△ACD,
所以
,
即AC 2=AB·AD.