设对角线AC,BD交于O,则△AOB为直角三角形,
直角边AO=1/2AC,BO=1/2BC,斜边AB=菱形边长=20/4=5
AO^2+BO^2=AB^2,(1/4)[AC^2+BD^2]=25
AC^2+BD^2=100.(1),
面积为20=(1/2)AC×BD,AC×BD=40.(2)
(AC+BD)^2=AC^2+BD^2+2AC×BD=180
AC+BD=√180=6√5.(3)
(AC-BD)^2=AC^2+BD^2-2AC×BD=20
AC-BD=2√5.(4)
(3)+(4):2AC=8√5,AC=4√5
(3)-(4):2BD=4√5,BD=2√5