解题思路:求出太阳能热水器的输入功率;
水温稳定时,输入功率与散失热量的功率相等,根据题意求出热量散失系数;
由能量守恒定律求出出水时稳定的出水温度.
太阳能热水器的输入功率:
P=3.0×8.0m2×1000W×80%=1.92×104W,
根据题意设,热水器损失功率为p损=k(t-t0),
当热水器不出水,也不进时,热水器水的温度稳定在85℃,
这时太阳能热水器的输入功率与损失功率相等,
则1.92×104W=k(85℃-25℃),解得:
k=320W/℃,
当热水器出水时,设稳定的出水温度为t′,
∵ρ=[m/V],
∴每分钟出水质量:
[△m/△t]=ρV=1×103kg/m3×6×10-3m=6kg,
由能量守恒定律得:[△m/△t]c水(t-t0)+k(t′-t0)=P,
即:6kg×4.2×103J/(kg•℃)×(85℃-25℃)+320W/℃×(t′-25℃)=1.92×104W,
解得:t′=51℃.
答:稳定的出水温度为51℃.
点评:
本题考点: 太阳能的其他相关计算.
考点点评: 本题难度较大,认真审题,知道稳定出水时,相等时间吸收的热量与散失的热量相等,根据题意列式即可解题.