cosˆ8a-sinˆ8a-cos2a=
((cosa)^4+(sina)^4)((cosa)^2+(cosa)^2)((cosa)^2-(sina)^2)-cos2a=
((cosa)^4+(sina)^4)cos2a-cos2a=
cos2a[(cosa)^4+((sina)^2+1)((sina)^2-1)]=
cos2a[(cosa)^2((cosa)^2-(sina)^2-1)]=
=-cos2a*(cosa)^2*(2(sina)^2)=
=-1/2*cos2a*(sin2a)^2=
=-1/4*sin4a *sin2a