1+(1/2^2)+(1/3^2)+……+(1/n^2)
把n*n放缩成n*(n-1)
1/(n*n)∞]=π^6/945 ,我目前还不会做
实际上对于k为偶数的情况,欧拉那个公式
∑(1/n^k)[n:1->∞,k:2,4,6,……]=-(2πi)^k B(k)/(2k!)
这是欧拉得到的最漂亮的结果之一(当然,他猜了好几年,证明了十几年).但是又多出个i(就是i^2=-1那个),还有个B(k).B(k)就是伯努利数,伯努利数没有一个通项公式,算起来也比较复杂,不过除了B(1)=-1/2,B(2k+1)都是0.前几位伯努利数是
B0 = 1,B1 = -1/2,B2 = 1/6,B4 = -1/30,B6 =1/42,B8 = -1/30,B10 = 5/66,B12 =-691/2730,B14 = 7/6,B16 = -3617/510,B18 = 43867/798,B20 = -174611/330…
现在,我们把∑(1/n^k)[n:1->∞]表示为一个函数ζ(s),
我们有ζ(2)=π^2/6,ζ(4)=π^4/90,ζ(6)=π^6/945,ζ(k)=-(2πi)^k B(k)/(2k!)(k是偶数)
很自然的问题出来了,ζ(3)=?,ζ(5)=?,ζ(2k+1)=?
非常不幸,这个问题欧拉没搞清楚,现在也没人能够搞清楚.现在唯一知道的是ζ(3)是个无理数,而ζ(5)是有理数还是无理数都不清楚.
这个没有通项公式,它的极限是(1/6)*(π^2).解法是用傅立叶级数展开.